

$\int_{\text {of curb }}^{\text {Extg. face }}$

ELEVATION

Notes:

1. Wall height varies, see sht. CO
2. Contractor to bury one full block
3. Top layer of retaining wall must be
2 full cap blocks
2 full cap blocks
RETAINING WAL AROUND INLET

(1) Sta. "MU" $55+05,7.3^{\prime}$ Lt. Rim elev $=229.50^{\prime}$
Inst. $12^{\prime \prime}$ HDPE pipe $-13^{\prime}, 51=0.50 \%$
F.L ${ }_{5}{ }^{\prime}$ depth,
onst. paved end slope (SW) Const. pavere end slope
Const. riprap pad (paid as riprap basin) (See dwg. nos. RD300, RD317, RD320,
RD378 RDSOO)
(2)
(2) Sta. "MU" $52+54.00,10.9$ ' Rt. 5^{\prime} depth, Class IIII, RCP
Const. sloped ends, $L t \& R t$ Const. sloped ends,
FLL. 1 l
S. 224.85 (SW)
See dwg. nos. RD318, RD319 \& RD386)
(3) Note not used
(4) Sta. "MU" $53+32.61$ to sta. " $M U$ " $58+26.62$, Paid under removal of structures and obstructions)
(5) Sta. "MU" $54+25.36,9.2^{\prime} R$
Const. paved enns slope Match extg. pipe slope
Extend $12^{\prime \prime}$ HDPE pipe - 16^{\prime} Extend 5^{\prime} depth
Const. riprap pad
Const. riprap pad (paid as riprap basin)
(6) Sta. "MU" $56+60.81,9.5^{\prime} R t$ Const. paved end slope Match extg. pipe slope
Extend 12"HDE pipe - 16^{\prime}
5' Extend 12
5^{\prime} depth
Const. riprap pad (paid as riprap basin)

(7) Sta. "MU" $57+75.00, ~ 7.0$ " Lt.
Inst. Type 3 inlet
Rim elev $=229.64^{\prime}$ Rim elev $=229.63^{\prime}$
Inst. $2^{\prime \prime}$ ' HDPF pipe -13^{\prime}, S1. $=0.50 \%$ F.L Out 226.64' (SW) Const. paved end slope
Const. riprap pad (paid as riprap basin)
(8) Inst. "CYCLISTS YIELD", type OBRI-2 - (2) Const. square tube sign support, anchored
(See dwg. nos. TM200, TM681\& TM687)

(1) Remove and reinstall existing sign
(2) Remove fence (See detail, sht. BBO2) (Paid under removal of
structures and obstruction structures and obstruc
Inst. work zone fencing
(3) Inst. "CROSS TRAFFIC DOES NOT STOP" type W4-4P-2
(4) Remove existing mailboxes and supports

Inst. locking mallbox with pedestal
(5) Inst. "YIELD TO PEDS", type R9-6-2
Const. square tube sign support, anchored
(6) Inst. "CYCLISTS YIELD", type OBRI-2-(2)

Const. square tube sign support, anchored
Inst. "BICYCLE YIELD LINE", type BYLD - 12
(8) Const. retaining wall around inlet prefabricated
(See sht. BB03)
(9) Inst. safety yellow truncated domes on new surface - 42 sq. ft.
(10) Relocate pole
$(B y$ others $)$
(11) Const. retaining wall around inlet prefabricated modular gravity
wall height- $24^{\prime \prime}$ Wall height-24
(See sht. BBo3)
(12) Relocate extg. power outlet
(BY others)
(13) Agg. base

Nom. comp. thkn. - 6"
(See detail, sht. BBO3)
(14) Const. standard curb
(See dwa. no. RDY00)
(15) Const. conc. walk
(See detail. sht. BBO3)

Rotation: 249° Scale: $1^{\prime \prime}=100^{\prime}$

SLOPED OR PROJECTING END

SLOPED END WITH SLOPE PAVING
 $t=$ Thickness of riprap pad, $t t$
T $w=$ Width of top of riprap pad, ft

(1) Do not excavate non-erodible rock in order to place riprap.
(2) Use riprap geotextile under
Class 200 and Class 700 Class 200 and Class 700 loose riprap.
(3) Top width (W) of the riprap pad is the larger of 5B or the width of the embankment slope protection.

HEADWALL AND WINGWALLS
$B=$ Diameter of circular barrel or span of arch pipe, box, or open-bottom arch. $D=$ Diameter of circular barrel or rise of arch
$T=$ Thickness of riprap blanket, see Table A.

EMBANKMENT PROTECTION

TABLE A - Embankment Slope Protection	
Riprap Class	TDistance
50	12 Inches
100	18 Icches
200	24 Inches *
700	36 Inches

riprap and embankment

TABLE B - Riprap Pad Dimensions		
$\begin{gathered} \text { Riprap } \\ \text { Class } \end{gathered}$	$\begin{aligned} & L^{*} \\ & (f) \end{aligned}$	T (t)
50	48 or 1.3	2.3
100	48 or 1.6	3.3
200	$4 B$ or 2.0	4.3
700	$4 B$ or 3.3	5.6
$* L$ is the greater of $4 B$ or the listed dimension.		

c) Riprap pad, end view RIPRAP PADS

Effective Date: December 1, 2023 - May 31, 2024

Effective Date: December 1, 2023 - May 31, 2024

PLAN
CONNECTION OF RIGID PIPE TO STRUCTURE

PLAN
CONNECTION OF FLEXIBLE PIPE TO STRUCTURE

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. See Std. Dwgs. RD364, RD365, and RD366 for inlet details not shown.
2. See appropriate standard drawings or special project details for other similar structures.
3. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plans.
4. Maximum pipe diameter varies with pipe material.
5. All connecting pipes shall have a tracer wire, or approved alternate.

See Std. Dwg. RD336 for tracer wire details.
6. When flexible pipe is used, install resilient connectors conforming to requirements of ASTM C923.
7. Pipe zone varies, see Std. Dwg. RD300

Effective Date: December 1, 2023 - May 31, 2024

PLAN

General notes for all details on this sheet:

1. Grates shall be bicycle-safe,
2. Precast concrete inlets may be used when specified or approved.
3. Precast concrete inlets may be used when specified or approved.
All precast inlets shall conform to requirements of ASTM C913.
4. Anchor vertical leg of inlet pipe if not a glued joint.
5. See Std. Dwg. RD336 for tracer wire details.
6. All reinforcement shall be 2 " clear of nearest face of conc., unless otherwise shown.
7. Max. connecting pipe diameter varies with pipe material.
8. All concrete shall be commercial grade concrete.
9. See Std. Dwg. RD339 for pipe to structure connections
10. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plans.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	AREA DRAINAGE BASIN OR FIELD INLET			
	2024			
	DATE	REVISION DESCRIPTION		
	BCALC.	N/A	SDARE- 14-JUL-2014	RD374

Effective Date: December 1, 2023 - May 31, 2024

GENERAL NOTES FOR ALL TABLES ON THIS SHEET:

1. Maximum height of cover is greatest vertical distance from top of pipe to finish grade.
2. Minimum height of cover is least vertical distance from top of pipe to subgrade.
3. For ODOT, pipes with diameters greater than 72 " must be reviewed by the Geo-Environmental Section.
4. For ODOT, pipes with maximum cover greater than those shown in the Tables shall be approved by the Senior Standards Engineer.
5. For multiple pipe installations, see Std. Dwg. RD300.
6. Open ends of pipes normally require a site specific design, and may require special treatment (sloped ends, culvert embankment protection, paved end slopes, safety end sections, or other measures). See special details or Standard Drawings as called for on plans.

Effective Date: December 1, 2023 - May 31, 2024

PIPE	CORRUGATED HDPE	
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)
12	2.0	29
15	2.0	30
18	2.0	27
24	2.0	24
30	2.0	21
36	2.0	23
42	2.0	22
48	2.0	22
60	2.5	21

Provide compacted backfill
adjacent to curb and sidewalk

TYPICAL SETBACK SIDEWALK CROSS SECTION
$E=$ curb exposure, see general note 6

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET

1. Include additional paved or unpaved 2 ' shy distance to vertical faces higher than 5 ' such as retaining walls, sound walls, fences and buildings.
Curb type and sidewalk width as shown on plans or as directed
On sidewalks 8^{\prime} and wider, provide a longitudinal joint at the midpoint
2. Install 3 " pvc weep hole pipes in sidewalks where shown on plans, and allowed by jurisdiction.

Place contraction joint over top of pipe. See Std. Dwg. RD700 for weep hole details.
4. Provide expansion joints around poles, posts, boxes, at ends of each driveway, and other fixtures which protrude through or against the structures.
For sidewalk, monolithic curb \& sidewalk, const. expansion joints at 45' maximum spacing. See Std. Dwg. RD722 for expansion joint details.
5. Const. contraction joints at 15 ' maximum spacing, and at ends of each curb ramp. See Std. Dwg. RD722 for contraction joint details.
6. Curb and gutter shown; see project plans for the curb design specified For curb details, see Std. Dwgs. RD700 \& RD701.
ODOT standard $\mathrm{E}=7^{\prime \prime}$
7. Sidewalk details are based on ODOT applicable standards.
8. Driveway encroaches into sidewalk shown; see project plans for the driveway design specified. For driveway deta
RD745 \& RD750.
9. See project plans for details not shown
10. Provide plantings in areas 12 SF or greater, as shown or directed. Treat areas less than 12 SF with mulch surfacing.

NOTES
Use softscape materials allowed by jurisdiction.
2. Approved softscape materials:
a) Loose, durable round rock $2^{\prime \prime}-4^{4 i}$ in diameter

Lava rock $2^{\prime \prime}-4$ "diamete
c) Wood
d) Sand

Install soft aggregate or pea gravel allowed.
4. Install softscape material flush with the top of sidewalk.

```
ECEND
```



```
Sidewalk pay limit.
Driveway pay limit, varies by option
(See general note 8).
\(\diamond \quad\) Cross slope \(1.5 \%\) max.
(Max. 2.0\% finished surface slope)
(Normal sidewalk cross slope)
```


The selection and use of this

 standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered

Effective Date: December 1, 2023 - May 31, 2024
3. The detectable warning surface shall extend the full width of the curb ramp opening, shared use path, blended transition, turning space, or other roadway entrance as applicable. A gap
up to 2 inches on each side of the detectable warning surface is permitted (measured at the leading edge of the detectable warning surface panel as shown in Detail " A ").
4. Detectable warning surface shall be placed at the back of curb for a minimum depth of 2 ft . he direction of pedestrian travel at curb ramps that are adjacent to traffic. Detectable war surface may be radial or rectangular, but must comply with the truncated dome size and spacing standards. Detectable warning surface may be cut to meet necessary shape as shown
in plans. Detectable warning surface across a grade break is prohibited. Place abutting panels within $1 / 4$ inch of each other and install anchors, as specified by manufacturers, along cut edse.
5. Color to be safety yellow if no color specified in construction note. Alternative colors require a design exception on or along state highways.
6. Detectable warning surface shall be used in the following locations
a) Curb ramps at street crossings.
b) Crossing islands (Accessible Route Islands)
b) Crossing islands
c) Rail crossings.
7. Where public transportation stations (rail, bus, etc.) use platform boarding, detectable arning surface shall be placed along the full edge length of the station, when not protected by platform screens or guards, (see Std. Dwg RD908)
8. Detectable warning surface shall not be used on the following locations.
e Std. Dwgs. RD950, RD952 and RD960).
c) Parking lots, acesss aisles and passenger loading zones where curb ramp does not lead c) Parking ots, acce
9. Where no curb is present, the detectable warning surface shall be placed at the edge of the roadway
10. On or along state highways, curb and gutter is required at curb ramps.

DETAIL "A"

TRUNCATED DOME SPACING TRUNCATED DOME

DETECTABLE WARNING SURFACE DETAIL

TRUNCATED DOME DETAILS

LeGEND:
曲: D.:.\# Detectable warning surface
Cross slope 1.5% max. (Normal sidewalk cross slope)

- Running slope 7.5% max.

Max. 8.3% finished surface slope)

Effective Date: December 1, 2023 - May 31, 2024

1．Detectable warning surface details \＆locations are based on applicable ODOT Standards．
2．See project plans for details not shown．
See Std．Dwgs．RD700 \＆RD701 for curbs．
See Std．Dwg．RD902 for detectable warning surface installation details．
3．On or along state highways，curb and gutter is required at curb ramps．
4．Detectable warning surface placement for perpendicular ramps vary as shown

LEGEND：
Marked or intended crossing location
Sidewalk
弲曲曲
$\leftrightarrow \quad$ Cross slope 1.5% max．
（Max．2．0\％finished surface slope）
（Normal sidewalk cross slope）
$\leftarrow \quad$ Running slope 7.5% max
Max 8.3% finished surface slope）

PERPENDICULAR CURB RAMP GRADE BREAK IN FRONT OF CURB

SHARED－USE PATH CONNECTION

Effective Date：December 1， 2023 －May 31， 2024

GEOTEXTILE/WIRE MESH/AGGREGATE - TYPE 2
NOT TO SCALE

PREFABRICATED FILTER INSERT - TYPE 3 Not to Scale

NOTE:
Wstall sod around the perimeter
of inlets within 36 hours of
harvest of the sod

SOD PROTECTION - TYPE 6

AREA DRAIN PLAN

Place a sandbag at ea
end of wattle and
end of wattle and
3'OC to hold in platal
CURB INLET PERSPECTIVE VIEW
COMPOST FILTER SOCK OR WATTLE - TYPE 7

NOTES:
Type 2-Geotextile/wire mesh/aggregate Place the wire mesh over the grate.
Place sediment fence geotextile Place sediment fence geotextile over the structure.
structure.
Install aggregate over the geotextile fabric. Type 3 - Prefabricated filter inserts Install prefabricated filter inserts according to the plans, special provisions, and
manufacturer recommendations. manufacturer recommenations.
Prefabricated inserts with provisions for overflow are allowed only when accompanied by additional $B M P$'s to
prevent the potential of sediments entering project storm systems. field fabricated inserts are not allowed. Type 7-Compost filter sock Drive $2^{\prime \prime} \times 2$ " wood stakes a minimum of
$6^{\prime \prime}$ into ground and flush with the top $6^{\text {" }}$ into ground and flush with the top
Overlap ends of sock per manufacturers
recommendations (12"min. $36^{\prime \prime}$ max recommendations (12"min., 36" max.).
Use $8^{\prime \prime}$ to $12^{\prime \prime}$ dia sock on curbside in traffic
areas.

CURB INLET SEDIMENT DAM - TYPE 10

Type 7 cont.)
Use $12^{\prime \prime}$ to $18^{\prime \prime}$ dia sock in non-traffic areas or areas where the larger socks can be
used safely. used safely.
use synthetic
use synthetic mesh socks for temporary
installations.
Type 10 - Curb inlet sediment dam fit curb inlet sediment dam snugly into inlet mouth. Curb inlet sediment dam is required for use with inlet filter insert
where at-grade inlet grate and curb inlet. where at-grade inlet grate and
are combined at a catch basin.
Type 11 - Wattle barrier with filter insert Install pratal
detail:
Install wattles over opening and $36^{\prime \prime}$ to each
side of opening tight against curb side of opening tight against curb. Adjust
wattle to force storm water to flow through wattle to force storm water to flow thro
fister insert or wattle prior to leving the
site.
Adjust, replace or modify the inlet protection Adjust, replace or modify the inlet protection
as neeeded to prevent sediment laden water
from entering the catch basin.

Effective Date: December 1, 2023 - May 31, 2024

SEDIMENT FENCE AND GEOTEXTILE BURY DETAIL - TYPE 1
not to scale

SECTION A-A

TERMINATION AT CORNER OR PROPERTY LINE

GEOTEXTILE WITH POST SLEEVES

TURNED ENDS CONNECTION

POST SPACING OVERLAP CONNECTION

NOTES:
. Sse must be approved by the engineer
fot approved for use with sediment

ALTERNATE SEDIMENT FENCE

 WITHOUT TRENCHING - TYPE 2NOT TO SCALE

CENERAL NOTES:
. 2 x2 Wood fence posts.
. Posts to be installed on downhill Position posts to prevent separation from geotextile.
3. Compact filter fabric trench backfil
and soil on uphill side of fence.
4. Locate fence no closer than three feet
to the toe of a slop
to the toe of a slope.

FENCE SPACING FOR GENERAL APPLICATION TABLE	
INSTALL PARALLEL ALONT	Ontours as follows
GRADE	MAXIMUM SPACINC
Crade < 10\%	$30{ }^{\prime}$
$10 \% \leq$ Crade $<15 \%$	150^{\prime}
15\% 20 Crade < 20%	$\frac{100^{\prime}}{50}$
30\% \leq Crade	25^{\prime}

5. Wing spacing shall comply with "Fence
Spacing for General Application Table"

POST SPACING TABLE	
6^{\prime}	Sediment Fence with Ceotextili elongation less than 50\%
4^{\prime}	Sediment Fence with Ceotextile elongation 50\% or more

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current orecon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	SEDIMENT FENCE			
	2024			
	DATE	Removel Calc brour nune ies		
	${ }^{01-2021}$			
	${ }_{\text {coll }}^{\text {coic }}$	- N/A	${ }_{\text {SDARE- }}^{\text {So-JAN-2021 }}$	RD1040

Effective Date: December 1, 2023 - May 31, 2024
General Installation Notes:
a. Signing details shown on this sheet are intended to convey "typical" conditions only.
Individual locations may require installation dividual locations may require installation
For guidance regarding unique installations or exceptions call the Project Sign Designe or Region Traffic Section.
b. Locate breakaway supports away from ditches to avoid problems with erosion, corrosion, debris, maintenance and breakaway performance See Dwg. No. TM635 for more information.
c. For wood post support details see Dwg. No. TM670.
d. For perforated steelsquare tube support details see Dwg. No. TM681.
. For triangular base breakaway support details see Dwg. No. TM602.
f. For multi-post breakaway support details see Dwg No. TM600.
g. Mounting heights should not be more than 3 inches more
h. $2^{2 "}$ vertical spacing between all signs.

Notes:

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with			
	OREGON STANDARD DRAWINGS			
	SIGN INSTALLATION DETAILS			
	DATE		N DESCRIPTION	
	$01 / 22$	Edited elevato nexti Montring teight deatils		
	BALC.	o. . . N/A	SDATE- 07 JAN 2022	TM200

Effective Date: December 1, 2023 - May 31, 2024

[^0]

Effective Date: December 1, 2023 - May 31, 2024

GENERAL NOTES

1. Perforated Steel Square Supports are designed in accordance with the AASHTO
竍 Sighals 4 th Edition, 2001, 2002, 2003, and 2006 interim revisions.
2. The design basic wind speed (3 second gust) shall be according to wind map shown on THAZ1.
3. Material grade for base hardware connection shall be according to the manufacturer's recommendation and based on crash testing.
4. Steel post shall have a minimum yieng on each of the 4 sides.
5. Steel shall be galvanized according to ASTM A653 with coating designation C90. 7. Ceneral design parameters are $\mathrm{Kz}=0.87, \mathrm{Cd}$ (sign) $=1.20$, and $\mathrm{G}=1.14$
6. Temporary signing uses an I $r=0.45$ for a recurrence interval of 10 years.
10.The sign width to sign height or sign height to sign width ratio shall not exceed 5.0 . 11.For horizontal and vertical clearances of permanent signs refer to TM200 and of

THREE POST ELEVATION

	$(X * Y * z)$ in $f t^{3}-$ Maximum								
	3 Second Cust Wind Speed (TM671)								
	85 MPH			95 MPH			105 or 110 MPH		
	Number of Posts			Number of Posts			Number of Posts		
Square Tube Size	1	2	3	1	2	3	1	2	3
$2^{\prime \prime}$-12 ga.	79	158	237	63	126	189	57	114	171
2/2"-12 ga.	136	272	408	109	218	327	98	196	294
2/2/2-10 ga.	165	330	495	132	264	396	119	238	357
$2^{1 / 4}{ }^{\prime \prime} \& 2^{1 / 2} 2^{\prime \prime} 12^{\text {g }}$ a.	231	462	693	185	370	555	167	334	501

PERMANENT PERFORATED STEEL SQUARE TUBE TABLE

	$(X * Y * Z)$ in $f t^{3}-$ Maximum								
	3 Second Gust Wind Speed (TM671)								
	85 MPH			95 MPH			105 or 110 MPH		
	Number of Posts			Number of Posts			Number of Posts		
Square Tube Size	1	2	3	1	2	3	1	2	3
2"-12 ga.	125	250	375	100	200	300	90	180	270
21/2"-12 ga.	215	430	645	172	344	516	155	310	465
2/2"-10 ga.	261	522	783	209	418	627	189	378	567
	364	728	1092	292	584	876	263	526	789

TEMPORARY PERFORATED STEEL SQUARE TUBE TABLE

	Number of Posts		
Square Tube Size	1	2	3
2"-12 ga.	Anchor	Anchor	N/A
$2^{1 / 2} 2^{\prime \prime}-12 \mathrm{ga}$.	Anchor	Slip	slip
$2^{1 / 2} 2^{\prime \prime}-10 \mathrm{ga}$.	Slip	Slip	Slip
	Slip	Slip	Slip

| 1. Anchor - See Drawing TM687 for PSST anchor |
| :--- | :--- | :--- | :--- |

foundation details.
2. Slip - See Drawing TM688 for PSST slip base
foundation details.
3. N / A - Do not use this option.
BASE REQUIREMENTS

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with			
	PERFORATED STEEL SQUARE TUBE (PSST) SIGN SUPPORT INSTALLATION			
	DATE	REVISION DESCRIPTION		
	Book No	5752	${ }_{\text {SDR }}^{\text {SATE }} 10 . \mathrm{JUL}-2017$	TM681

Effective Date: December 1, 2023 - May 31, 2024

TAPER TYPES \& FORMULAS	
TAPER	FORMULA
Merging (Lane Closure)	"L"
Shifting	"L"/2 or $1 / 2 \mathrm{~L}$ L"
Shoulder Closure	"L" $/ 3$ or $1 / 3 \mathrm{L"}$
Flagging (See Drg. TM850)	$50 \mathrm{l}-100^{\prime}$
Downstream (Termination)	Varies (See Drawings)

$\star \begin{aligned} & \text { Use Pre-Construction Posted Speed to select } \\ & \text { the Speed from the Tables below: }\end{aligned}$

TEMPORARY BARRIER FLARE RATE TABLE	
\star SPEED (mph)	MINIMUM FLARE RATE
≤ 30	$8: 1$
35	$9: 1$
40	10.1
45	$12: 1$
50	$14: 1$
55	$16: 1$
60	189.1
65	$9: 1$
70	$20: 1$

TRAFFIC CONTROL DEVICES (TCD) SPACING TABLE				
\star SPEED (mph)	Sign Spacing (ft)			Max. Channelizing Device Spacing (ft)
$20-30$	100	100	100	20
$35-40$	350	350	350	20
$45-55$	500	500	500	40
$60-70$	700	700	700	40
Freeway	1000	1500	2640	40

NOTES:

- Place traffic control devices on 10 ft . spacing for intersection and access radi When necessary, sign spacing may be adjusted to fit site conditions.
Limit spacing adjustments to 30% of the $" A$ " dimension for all speeds.
notes
- When paved shoulders adjacent to excavations are less tha
four feet wide protect longitudinal abrupt edge as shown.
- Use aggregate wedge when abrupt edge is 2 inches or greate

Extg. pavement

NOTES:

- Install PCMS beyond the outside shoulder, when possible.
- Use the appropriate type of barricade panels for PCMS location Right shoulder, use Type B BIII)R
Left shoulder, use Type (III)L
- Use six drums in shoulder taper on 20 ' spacing. The drums and
barricade may be omitted when PCMS is placed behind a roadside barrier
- Detail as shown is used for trailered and non-crashworthy components of - Smart Work Zone Systems

PORTABLE CHANGEABLE MESSAGE
SIGN (PCMS) INSTALLATION

NOTES:

- Install Flagger Station Lighting beyond the
- Use six tubular markers in shoulder taper

Place cart / generator / power supply off of the
shoulder, as far as practical.

FLAGGER STATION LIGHTING DELINEATION

NOTES

- Abrupt edges may be created by paving, operations, excavations or other roadway work. Use abrup
abrupt edges of 1 inch or greater.
- If the excavation is located on left side of traffic, replace the

- Continue signing and other traffic control devices
- If roll-up signs are used, attach the correct (CW21-9) plaques to the sign face using hook and loop
Place roll-up signs in advance of barricades.

TYPICAL ABRUPT EDGE DELINEATION

General notes for all tcp drawings:

- Signs and other Traffic Control Devices (TCD)
- Place a barricade approx. 20 ahead of al
- Arrows shown in roadway are directional arrows
to indicate traffic movements.

Arrows shown in roadway are
to indicate traffic movements.

- All signs are 48 " $\times 48$ " unless otherwise shown. Use fluorescent orange sheeting for the
background of all temporary warning signs.
- 。 Temp. Plastic Drums See TCD Spacing
for max. spacing.
- - $28^{\prime \prime}$ Tubular Markers See TCD Spacing Table
for max. spacing.

DIIIID UNDER CONSTRUCTION

- All diamond shaped warning signs mounted on barrier sign supports shall be 36 " by $366^{\prime \prime}$.
- Low speed highways have a pre-construction posted speed of 40 mph or less.
High speed highways have a pre-construction posted speed of 45 mph or higher
- Do not locate sign supports in locations designated for bicycle or pedestrian traffic.

Combine drawing details to complete temporary traffic control for each work activity.

- Coordinate and control pedestrian movements through a Temporary Accessible Route using
- To be Troafic Cod by Dos,
- To be accompanied by Dwg. Nos. TM820 \& TM82

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS			
	TABLES, ABRUPT EDGE AND PCMS DETAILS			
	2024			
	DATE	Added a note for Peass		
	${ }^{07-2022}$			
	Book	N/A	SDRR 01-JUL-2022	TM800

4-Lane, 2-Way
RIGHT LANE CLOSURE, NEAR SIDE

General notes for all detall

- Additional Traffic Control Measures (TCM) may be required for all legs of the intersection
- The "SIGNAL AHEAD" (W3-3a) sign may be substituted with the signal ahead symbol (W3-3) sign.
- To determine Taper Length ("L") and Buffer Length ("B"), use the "MINIMUM LENGTHS TABLE" on Dwg. TM800
- For left lane or shoulder work, place TCD to close left lane or shoulder. Use "LEFT LANE CLOSED AHEAD" (W20-5) sign,
- To determine sign spacing A, B, and C, use "TRAFFIC Control devices (TCD) SPACING TABLE" on Dwg. TM800.
- When a through road intersects within the work zone, place a "ROAD WORK AHEAD" (W20-1) sign in advance of the intersection at sign spacing A.
- Tubular markers may be used in lane closure tapers where posted speed is 40 mph or less.
- Where shoulder width is limited, Sequential Arrow may be placed within the lane closure taper.
- Place channelizing devices around intersection radii, business accesses and driveways at 10 ' spacing.
- Install a "BICYCLES ON ROADWAY" (CW1 1-1) sign in advance of the closure when a bike lane is closed, or when the shoulder is closed and bikes
are expected.
- To be accompanied by Dwg. Nos. TM820,
TM82, TM840 \& TM854.
- Automated Flagging Assistance Device (AFAD)
" Tubular Markers See TCD Spacing
ble on TM800 for max. spacing.
$\ldots .0$ Temp Plastic Drums See TCD Spacing
\square UNDER TRAFFIC
EIIIIJ UNDER CONSTRUCTION

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with the current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS INTERSECTION WORK ZONE DETAILS 2024			
	BOOLC.	N/A	${ }_{\text {SDR }}^{\text {SDR }}$ 01-JUL-2022	TM841

Effective Date: December 1, 2023 - May 31, 2024

[^0]: Effective Date: December 1, 2023 - May 31, 2024

